Page 335 - 《环境工程技术学报》2023年第1期
P. 335

第 1 期                 能昌信等:   受  HDP 膜影响下的垃圾填埋场渗滤液水位探测方法研究                                 · 331 ·
                                                E
             3 结论                                                   pollution survey[J]. Research of Environmental Sciences,2013,
                                                                    26(8):879-884.
                (1) 川形装置相比于传统的高密度电法装置,其                       [10]   EL-QADY  G,  USHIJIMA  K.  Inversion  of  DC  resistivity  data
                                                                    using neural networks[J]. Geophysical Prospecting,2001,49(4):
            建立的人工电流场电流流经的区域更广,采集的数                                  417-430.
            据中包含更多的场地信息。                                      [11]   CALDERÓN-MACÍAS  C,  SEN  M  K,  STOFFA  P  L.  Artificial
                                                                    neural  networks  for  parameter  estimation  in  geophysics[J].
                (2) B 神经网络具有较强的非线性映射能力,可
                     P
                                                                    Geophysical Prospecting,2000,48(1):21-47.
            以实现电势数据到电阻率数据的非线性反演。                              [12]   徐海浪, 吴小平.电阻率二维神经网络反演[J]. 地球物理学报,
                (3) 基于川形装置      的  B 神经网络能有效消除由                     2006,49(2):584-589.
                                    P
                                                                    XU  H  L,  WU  X  P.  2-D  resistivity  inversion  using  the  neural
            HDP 膜所引起的边界效应的影响,准确反映出填埋                                network  method[J].  Chinese  Journal  of  Geophysics,2006,
                E
            场中堆体高度、渗滤液位置和水位高度等信息,识别                                 49(2):584-589.
                                                              [13]   NEYAMADPOUR  A,  TAIB  S,  WAN  ABDULLAH  W  A  T.
            准确率约     为  83.2%,而传统   的  L 法并不能反映出堆
                                        S
                                                                    Using  artificial  neural  networks  to  invert  2D  DC  resistivity
            体内的渗滤液信息。                                               imaging  data  for  high  resistivity  contrast  regions:  a  MATLAB
                                                                    application[J]. Computers & Geosciences,2009,35(11):2268-
                (4) 利用川形装置进行填埋场渗滤液探测,能准
                                                                    2274.
            确识别出渗滤液严重堆积的区域,为后期开展垃圾                            [14]   NEYAMADPOUR  A,  WAN  ABDULLAH  W  A  T,  TAIB  S.
            填埋场的渗滤液治理工作提供物探依据。                                      Inversion of quasi-3D DC resistivity imaging data using artificial
                                                                    neural  networks[J].  Journal  of  Earth  System  Science,2010,
                                                                    119(1):27-40.
            参考文献                                              [15]   戴前伟, 江沸菠.基于混沌振荡PSO-BP算法的电阻率层析成像
            [  1  ]   徐亚, 能昌信, 刘峰, 等.填埋场长期渗漏的环境风险评价方法               非线性反演[J]. 中国有色金属学报,2013,23(10):2897-2904.
                  与案例研究[J]. 环境科学研究,2015,28(4):605-612.              DAI  Q  W,  JIANG  F  B.  Nonlinear  inversion  for  electrical
                  XU Y, NAI C X, LIU F, et al. Method and case study to evaluate  resistivity  tomography  based  on  chaotic  oscillation  PSO-BP
                  long-term environmental risks from landfill leakage[J]. Research  algorithm[J].  The  Chinese  Journal  of  Nonferrous  Metals,2013,
                  of Environmental Sciences,2015,28(4):605-612.     23(10):2897-2904.
            [  2  ]   徐亚, 刘玉强, 刘景财, 等.填埋场渗漏风险评估的三级PRA模        [16]   能昌信, 孙晓晨, 徐亚, 等.基于深度卷积神经网络的场地污染
                  型及案例研究[J]. 环境科学研究,2014,27(4):447-454.             非线性反演方法[J]. 中国环境科学,2019,39(12):5162-5172.
                  XU  Y,  LIU  Y  Q,  LIU  J  C,  et  al.  3-level  of  probability  risk  NAI  C  X,  SUN  X  C,  XU  Y,  et  al.  A  site  pollution  nonlinear
                  assessment on environmental risk of landfill leakage and it's case  inversion method based on deep convolutional neural network[J].
                  study[J]. Research of Environmental Sciences,2014,27(4):447-  China Environmental Science,2019,39(12):5162-5172.
                  454.                                        [17]   BUTLER  S  L,  SINHA  G.  Forward  modeling  of  applied
            [  3  ]   詹良通, 管仁秋, 陈云敏, 等.某填埋场垃圾堆体边坡失稳过程               geophysics  methods  using  Comsol  and  comparison  with
                  监测与反分析[J]. 岩石力学与工程学报,2010,29(8):1697-             analytical  and  laboratory  analog  models[J].  Computers  &
                  1705.                                             Geosciences,2012,42:168-176.
            [  4  ]   孙汉武, 熊彬, 徐志锋, 等.高密度电法在垃圾填埋场勘探中的         [18]   王泽亚, 徐亚, 能昌信, 等.海滨垃圾填埋场渗滤液污染土壤的
                  应用[J]. 矿产与地质,2020,34(6):1143-1148.                复电阻率特性[J]. 环境科学研究,2020,33(4):1021-1027.
                  SUN H W, XIONG B, XU Z F, et al. Application of high density  WANG  Z  Y,  XU  Y,  NAI  C  X,  et  al.  Complex  resistivity
                  electric  method  in  the  exploration  of  waste  landfill  site[J].  properties  of  leachate-contaminated  soil  in  coastal  landfill[J].
                  Mineral Resources and Geology,2020,34(6):1143-1148.  Research of Environmental Sciences,2020,33(4):1021-1027.
            [  5  ]   朱紫祥, 胡俊杰.高密度电法在岩溶地区溶洞勘查中的应              [19]   朱勇, 能昌信, 陆晓春, 等.铬污染土壤超低频复电阻率频散特
                  用[J]. 工程地球物理学报,2017,14(3):290-293.                性[J]. 环境科学研究,2013,26(5):555-560.
                  ZHU Z X, HU J J. Application of high-density electrical method  ZHU  Y,  NAI  C  X,  LU  X  C,  et  al.  The  complex  resistivity
                  to exploration of Karst caves[J]. Chinese Journal of Engineering  dispersion properties of chromium-contaminated soil in the ultra-
                  Geophysics,2017,14(3):290-293.                    low  frequency  power  supply[J].  Research  of  Environmental
            [  6  ]   龚育龄, 叶腾飞, 董路, 等.卫生填埋场黏土衬层密实性试验研               Sciences,2013,26(5):555-560.
                  究[J]. 环境科学与技术,2011,34(9):9-11.              [20]   肖宏跃, 雷宛. 地电学教程[M]. 北京: 地质出版社, 2008: 150-
                  GONG  Y  L,  YE  T  F,  DONG  L,  et  al.  Experimental  study  on  163.
                  compactness of clay liners in sanitary landfill[J]. Environmental  [21]   李春华, 胡文, 叶春, 等.基于BP神经网络预测地表水净化装置
                  Science & Technology,2011,34(9):9-11.             总氮的去除效果[J]. 环境工程技术学报,2018,8(6):651-655.
            [  7  ]   付士根, 杜文利, 胡家国.垃圾填埋场渗滤液水位地球物理探测                LI C H, HU W, YE C, et al. Study on prediction of total nitrogen
                  技术初探[J]. 工程地球物理学报,2018,15(6):749-754.             removal effect of a surface water purification device based on BP
                  FU  S  G,  DU  W  L,  HU  J  G.  Preliminary  study  on  geophysics  neural  network[J].  Journal  of  Environmental  Engineering
                  echnology of leachate level in landfill site[J]. Chinese Journal of  Technology,2018,8(6):651-655.
                  Engineering Geophysics,2018,15(6):749-754.  [22]   林佳敏, 陈金良, 林晶晶, 等.BP神经网络和ARIMA模型对污水
            [  8  ]   张建智.时移电阻率法在垃圾填埋场渗滤液监测中的应用[J].                 处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报,
                  中国煤炭地质,2019,31(10):80-85.                         2019,9(5):573-578.
            [  9  ]   王玉玲, 能昌信, 王彦文, 等.2种电阻率法污染探测装置的抗噪              LIN J M, CHEN J L, LIN J J, et al. The simulation and prediction
                  声性能比较[J]. 环境科学研究,2013,26(8):879-884.              of TN in wastewater treatment effluent using BP neural network
                  WANG Y L, NAI C X, WANG Y W, et al. Comparison of anti-  and  ARIMA  model[J].  Journal  of  Environmental  Engineering
                  noise  performance  using  wenner  and  dipole-dipole  arrays  in  Technology,2019,9(5):573-578. ⊕
   330   331   332   333   334   335   336   337   338   339   340