Page 335 - 《环境工程技术学报》2023年第1期
P. 335
第 1 期 能昌信等: 受 HDP 膜影响下的垃圾填埋场渗滤液水位探测方法研究 · 331 ·
E
3 结论 pollution survey[J]. Research of Environmental Sciences,2013,
26(8):879-884.
(1) 川形装置相比于传统的高密度电法装置,其 [10] EL-QADY G, USHIJIMA K. Inversion of DC resistivity data
using neural networks[J]. Geophysical Prospecting,2001,49(4):
建立的人工电流场电流流经的区域更广,采集的数 417-430.
据中包含更多的场地信息。 [11] CALDERÓN-MACÍAS C, SEN M K, STOFFA P L. Artificial
neural networks for parameter estimation in geophysics[J].
(2) B 神经网络具有较强的非线性映射能力,可
P
Geophysical Prospecting,2000,48(1):21-47.
以实现电势数据到电阻率数据的非线性反演。 [12] 徐海浪, 吴小平.电阻率二维神经网络反演[J]. 地球物理学报,
(3) 基于川形装置 的 B 神经网络能有效消除由 2006,49(2):584-589.
P
XU H L, WU X P. 2-D resistivity inversion using the neural
HDP 膜所引起的边界效应的影响,准确反映出填埋 network method[J]. Chinese Journal of Geophysics,2006,
E
场中堆体高度、渗滤液位置和水位高度等信息,识别 49(2):584-589.
[13] NEYAMADPOUR A, TAIB S, WAN ABDULLAH W A T.
准确率约 为 83.2%,而传统 的 L 法并不能反映出堆
S
Using artificial neural networks to invert 2D DC resistivity
体内的渗滤液信息。 imaging data for high resistivity contrast regions: a MATLAB
application[J]. Computers & Geosciences,2009,35(11):2268-
(4) 利用川形装置进行填埋场渗滤液探测,能准
2274.
确识别出渗滤液严重堆积的区域,为后期开展垃圾 [14] NEYAMADPOUR A, WAN ABDULLAH W A T, TAIB S.
填埋场的渗滤液治理工作提供物探依据。 Inversion of quasi-3D DC resistivity imaging data using artificial
neural networks[J]. Journal of Earth System Science,2010,
119(1):27-40.
参考文献 [15] 戴前伟, 江沸菠.基于混沌振荡PSO-BP算法的电阻率层析成像
[ 1 ] 徐亚, 能昌信, 刘峰, 等.填埋场长期渗漏的环境风险评价方法 非线性反演[J]. 中国有色金属学报,2013,23(10):2897-2904.
与案例研究[J]. 环境科学研究,2015,28(4):605-612. DAI Q W, JIANG F B. Nonlinear inversion for electrical
XU Y, NAI C X, LIU F, et al. Method and case study to evaluate resistivity tomography based on chaotic oscillation PSO-BP
long-term environmental risks from landfill leakage[J]. Research algorithm[J]. The Chinese Journal of Nonferrous Metals,2013,
of Environmental Sciences,2015,28(4):605-612. 23(10):2897-2904.
[ 2 ] 徐亚, 刘玉强, 刘景财, 等.填埋场渗漏风险评估的三级PRA模 [16] 能昌信, 孙晓晨, 徐亚, 等.基于深度卷积神经网络的场地污染
型及案例研究[J]. 环境科学研究,2014,27(4):447-454. 非线性反演方法[J]. 中国环境科学,2019,39(12):5162-5172.
XU Y, LIU Y Q, LIU J C, et al. 3-level of probability risk NAI C X, SUN X C, XU Y, et al. A site pollution nonlinear
assessment on environmental risk of landfill leakage and it's case inversion method based on deep convolutional neural network[J].
study[J]. Research of Environmental Sciences,2014,27(4):447- China Environmental Science,2019,39(12):5162-5172.
454. [17] BUTLER S L, SINHA G. Forward modeling of applied
[ 3 ] 詹良通, 管仁秋, 陈云敏, 等.某填埋场垃圾堆体边坡失稳过程 geophysics methods using Comsol and comparison with
监测与反分析[J]. 岩石力学与工程学报,2010,29(8):1697- analytical and laboratory analog models[J]. Computers &
1705. Geosciences,2012,42:168-176.
[ 4 ] 孙汉武, 熊彬, 徐志锋, 等.高密度电法在垃圾填埋场勘探中的 [18] 王泽亚, 徐亚, 能昌信, 等.海滨垃圾填埋场渗滤液污染土壤的
应用[J]. 矿产与地质,2020,34(6):1143-1148. 复电阻率特性[J]. 环境科学研究,2020,33(4):1021-1027.
SUN H W, XIONG B, XU Z F, et al. Application of high density WANG Z Y, XU Y, NAI C X, et al. Complex resistivity
electric method in the exploration of waste landfill site[J]. properties of leachate-contaminated soil in coastal landfill[J].
Mineral Resources and Geology,2020,34(6):1143-1148. Research of Environmental Sciences,2020,33(4):1021-1027.
[ 5 ] 朱紫祥, 胡俊杰.高密度电法在岩溶地区溶洞勘查中的应 [19] 朱勇, 能昌信, 陆晓春, 等.铬污染土壤超低频复电阻率频散特
用[J]. 工程地球物理学报,2017,14(3):290-293. 性[J]. 环境科学研究,2013,26(5):555-560.
ZHU Z X, HU J J. Application of high-density electrical method ZHU Y, NAI C X, LU X C, et al. The complex resistivity
to exploration of Karst caves[J]. Chinese Journal of Engineering dispersion properties of chromium-contaminated soil in the ultra-
Geophysics,2017,14(3):290-293. low frequency power supply[J]. Research of Environmental
[ 6 ] 龚育龄, 叶腾飞, 董路, 等.卫生填埋场黏土衬层密实性试验研 Sciences,2013,26(5):555-560.
究[J]. 环境科学与技术,2011,34(9):9-11. [20] 肖宏跃, 雷宛. 地电学教程[M]. 北京: 地质出版社, 2008: 150-
GONG Y L, YE T F, DONG L, et al. Experimental study on 163.
compactness of clay liners in sanitary landfill[J]. Environmental [21] 李春华, 胡文, 叶春, 等.基于BP神经网络预测地表水净化装置
Science & Technology,2011,34(9):9-11. 总氮的去除效果[J]. 环境工程技术学报,2018,8(6):651-655.
[ 7 ] 付士根, 杜文利, 胡家国.垃圾填埋场渗滤液水位地球物理探测 LI C H, HU W, YE C, et al. Study on prediction of total nitrogen
技术初探[J]. 工程地球物理学报,2018,15(6):749-754. removal effect of a surface water purification device based on BP
FU S G, DU W L, HU J G. Preliminary study on geophysics neural network[J]. Journal of Environmental Engineering
echnology of leachate level in landfill site[J]. Chinese Journal of Technology,2018,8(6):651-655.
Engineering Geophysics,2018,15(6):749-754. [22] 林佳敏, 陈金良, 林晶晶, 等.BP神经网络和ARIMA模型对污水
[ 8 ] 张建智.时移电阻率法在垃圾填埋场渗滤液监测中的应用[J]. 处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报,
中国煤炭地质,2019,31(10):80-85. 2019,9(5):573-578.
[ 9 ] 王玉玲, 能昌信, 王彦文, 等.2种电阻率法污染探测装置的抗噪 LIN J M, CHEN J L, LIN J J, et al. The simulation and prediction
声性能比较[J]. 环境科学研究,2013,26(8):879-884. of TN in wastewater treatment effluent using BP neural network
WANG Y L, NAI C X, WANG Y W, et al. Comparison of anti- and ARIMA model[J]. Journal of Environmental Engineering
noise performance using wenner and dipole-dipole arrays in Technology,2019,9(5):573-578. ⊕

