Page 73 - 《环境工程技术学报》2023年第1期
P. 73
第 1 期 刘茂辉等:基 于 LMD 方法 和 STIRPA 模型的天津市碳排放量对比分析 · 69 ·
I
T
base on the grey relational analysis[J]. Environmental Pollution & data from 2007 to 2016[J]. Ecological Economy,2019,35(4):
Control,2013,35(9):101-106. 26-32.
[ 7 ] 任晓松, 赵涛.基于广义费雪模型的天津市碳排放影响因素分 [15] KAYA Y. Impact of carbon dioxide emission control on GNP
析[J]. 干旱区资源与环境,2014,28(6):8-12. growth: interpretation of proposed scenarios IPCC energy and
REN X S, ZHAO T. Impact factor decomposition analysis for industry subgroup, response strategies working group[R]. Paris:
carbon emissions change in Tianjin City based on the GFI Presentation to the Energy and Industry Subgroup, Response
model[J]. Journal of Arid Land Resources and Environment, Strategies Working Group, IPCC, 1989.
2014,28(6):8-12. [16] LI J X, CHEN Y N, LI Z, et al. Low-carbon economic
[ 8 ] 李健, 王孟艳, 高杨.基于STIRPAT模型的天津市低碳发展驱动 development in Central Asia based on LMDI decomposition and
力影响分析[J]. 科技管理研究,2014,34(15):66-71. comparative decoupling analyses[J]. Journal of Arid Land,2019,
LI J, WANG M Y, GAO Y. Analysis of the driving forces' 11(4):513-524.
impact on the low-carbon development of Tianjin based on [17] ANG B W, LIU N. Handling zero values in the logarithmic mean
STIRPAT model[J]. Science and Technology Management Divisia index decomposition approach[J]. Energy Policy,2007,
Research,2014,34(15):66-71. 35(1):238-246.
[ 9 ] 王媛, 贾皎皎, 赵鹏, 等.LMDI方法分析结构效应对天津市碳排 [18] 李健, 李海霞.产业转移视角下京津冀石化产业碳排放因素分
放 的 影 响 及 对 策[J]. 天 津 大 学 学 报(社 会 科 学 版),2014, 解与减排潜力分析[J]. 环境科学研究,2020,33(2):324-332.
16(6):509-514. LI J, LI H X. Analysis of carbon emission factors decomposition
WANG Y, JIA J J, ZHAO P, et al. Effect of structure on carbon and emission reduction potential of Beijing-Tianjin-Hebei
emission and countermeasures in Tianjin based on LMDI[J]. regional petrochemical industry from the perspective of industrial
Journal of Tianjin University (Social Sciences),2014 ,16 (6 ) : transfer[J]. Research of Environmental Sciences,2020 ,33 (2 ) :
509-514. 324-332.
[10] 李健, 王铮, 朴胜任.大型工业城市碳排放影响因素分析及趋势 [19] 庄颖, 夏斌.广东省交通碳排放核算及影响因素分析[J]. 环境
预测: 基于PLS-STIRPAT模型的实证研究[J]. 科技管理研究, 科学研究,2017,30(7):1154-1162.
2016,36(7):229-234. ZHUANG Y, XIA B. Estimation of CO emissions from the
2
LI J, WANG Z, PIAO S R. Influence factors analysis and trend transport sector in Guangdong Province, China and analysis of
forecasting of large industrial cities' carbon emissions based on factors affecting emissions[J]. Research of Environmental
the PLS-STIRPAT model[J]. Science and Technology Sciences,2017,30(7):1154-1162.
Management Research,2016,36(7):229-234. [20] ZHANG L, LEI J, ZHOU X, et al. Changes in carbon dioxide
[11] 李雪梅, 张庆.天津市能源消费碳排放影响因素及其情景预 emissions and LMDI-based impact factor decomposition: the
测[J]. 干旱区研究,2019,36(4):997-1004. Xinjiang Uygur autonomous region as a case[J]. Journal of Arid
LI X M, ZHANG Q. Factors affecting carbon emission from Land,2014,6(2):145-155.
energy consumption in Tianjin[J]. Arid Zone Research,2019, [21] 余明成, 徐占军, 余健.山西省CO 排放影响因素研究及情景分
2
36(4):997-1004. 析[J]. 环境科学研究,2018,31(8):1357-1365.
[12] 孙钰, 李泽涛, 姚晓东.天津市构建低碳城市的策略研究: 基于 YU M C, XU Z J, YU J. Influencing factors of CO emission and
2
碳排放的情景分析[J]. 地域研究与开发,2012,31(6):115- scenario analysis in Shanxi Province[J]. Research of
118. Environmental Sciences,2018,31(8):1357-1365.
SUN Y, LI Z T, YAO X D. The strategy of building low-carbon [22] YORK R, ROSA E A, DIETZ T. STIRPAT, IPAT and ImPACT:
city in Tianjin: based on scenario analysis of carbon emission[J]. analytic tools for unpacking the driving forces of environmental
Areal Research and Development,2012,31(6):115-118. impacts[J]. Ecological Economics,2003,46(3):351-365.
[13] 苑清敏, 刘琪, 刘俊.基于系统动力学的城市碳排放及减排潜力 [23] 张乐勤, 陈素平.基于PLS方法的高技术产业发展对工业污染
分析: 以天津市为例[J]. 安全与环境学报,2016,16(6):256- 影响效应测度与分析[J]. 环境工程技术学报,2018,8(5):563-
261. 570.
YUAN Q M, LIU Q, LIU J. On the reduced urban carbon ZHANG L Q, CHEN S P. Measurement and analysis of influence
emission and an analysis of such reduced emission potential effect of high-tech industry development on industrial pollution
based on the dynamic system by taking Tianjin as a case based on PLS method[J]. Journal of Environmental Engineering
sample[J]. Journal of Safety and Environment,2016,16(6):256- Technology,2018,8(5):563-570.
261. [24] 张剑, 刘景洋, 董莉, 等. 中国能源消费CO 排放的影响因素及
2
[14] 李健, 王尧, 王颖.天津市碳排放脱钩态势及碳减排潜力分析: 情景分析[J/OL]. 环境工程技术学报.doi:10.12153/j.issn.1674-
基于2007—2016年的面板数据[J]. 生态经济,2019,35(4):26- 991X.20211229.
32. ZHANG J, LIU J Y, DONG L, et al. Influencing factors and
LI J, WANG Y, WANG Y. Tianjin carbon emissions decoupling scenario analysis of China's energy consumption CO
2
analysis and carbon emission reduction potential: based on panel Emissions[J/OL]. Journal of Environmental Engineering