Page 31 - 《环境工程技术学报》2022年第5期
P. 31
第 5 期 许自舟等:天津市近岸海域水质变化趋势分析及水质目标研究 · 1387 ·
137.
[ 2 ] 国家环境保护局. 海水水质标准: GB 3097—1997[S]. 北京: 环
境科学出版社, 2004.
[ 3 ] 夏桂敏, 张思瑶.基于季节性Kendall检验法的白石水库水质变
化趋势[J]. 南水北调与水利科技,2015,13(6):1069-1074.
XIA G M, ZHANG S Y. Water quality variation in the Baishi
Reservoir based on seasonal Kendall test method[J]. South-to-
North Water Transfers and Water Science & Technology,2015,
13(6):1069-1074.
[ 4 ] 林佳敏, 陈金良, 林晶晶, 等.BP神经网络和ARIMA模型对污水
处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报,
2019,9(5):573-578.
LIN J M, CHEN J L, LIN J J, et al. The simulation and prediction
of TN in wastewater treatment effluent using BP neural network
and ARIMA model[J]. Journal of Environmental Engineering
Technology,2019,9(5):573-578.
[ 5 ] 王英伟, 马树才.基于ARIMA和LSTM混合模型的时间序列预
测[J]. 计算机应用与软件,2021,38(2):291-298.
WANG Y W, MA S C. Time series forecasting based on
ARIMA_DLSTM hybrid model[J]. Computer Applications and
图 9 天津市近岸海域水质分区管控 Software,2021,38(2):291-298.
Fig.9 Zoning management map of water quality in the [ 6 ] 李文静, 王潇潇.基于简化型LSTM神经网络的时间序列预测
coastal waters of Tianjin 方法[J]. 北京工业大学学报,2021,47(5):480-488.
LI W J, WANG X X. Time series prediction method based on
海河及独流减河邻近海域水环境质量。
simplified LSTM neural network[J]. Journal of Beijing
3 结论 University of Technology,2021,47(5):480-488.
[ 7 ] HIRSCH R M, SLACK J R, SMITH R A. Techniques of trend
(1)基 于 GA M 模型,建立了天津市近岸海域水 analysis for monthly water quality data[J]. Water Resources
Research,1982,18(1):107-121.
质趋势分析模型及水质目标确定方法,提 出 202 年
5
[ 8 ] ZHANG Q, MURPHY R R, TIAN R, et al. Chesapeake Bay's
天津市近岸海域优良水质比例达 到 75 % 的目标,分 water quality condition has been recovering: insights from a
析了这一目标的合理性和可达性,解决了重点海域 multimetric indicator assessment of thirty years of tidal
monitoring data[J]. Science of the Total Environment,2018,
排污总量控制研究中仅依据海洋功能区划、近岸海
637/638:1617-1625.
域水环境功能区划确定水质目标的不足,同时为区
[ 9 ] HASTIE T, TIBSHIRANI R. Generalized additive models[J].
域“十四五”海洋生态环境保护规划提供参考。 Statistical Science,1986,1(3):297-310.
(2)分析了天津市近岸海域水质变化趋势。 [10] HARDING L W, GALLEGOS C L, PERRY E S, et al. Long-
2013—201 年 与 2007—201 年相比,天津市近岸海 term trends of nutrients and phytoplankton in Chesapeake Bay[J].
8
2
Estuaries and Coasts,2016,39(3):664-681.
域无机氮浓度总体呈下降趋势,下降比例 为 13.19%;
[11] QIAO Y H, FENG J F, CUI S F, et al. Long-term changes in
活 性 磷 酸 盐 浓 度 总 体 呈 上 升 趋 势 , 上 升 比 例为 nutrients, chlorophyll a and their relationships in a semi-enclosed
7.01%,尚未恢复 到 2007—201 年的平均水平。 eutrophic ecosystem, Bohai Bay, China[J]. Marine Pollution
2
(3)根据分析评估结果,将天津市近岸海域划分 Bulletin,2017,117(1/2):222-228.
[12] RICHARDS R, CHALOUPKA M, STRAUSS D, et al. Using
7 个区域,建议据此实施海域水质分区管理,进一步
generalized additive modelling to understand the drivers of long-
加强农业面源污染防治,强化流域上下游协同治理 term nutrient dynamics in the broadwater estuary (a subtropical
和省际水污染联防联治,持续改善天津市近岸海域 estuary), Gold Coast, Australia[J]. Journal of Coastal Research,
水质。 2014,298:1321-1329.
[13] VARANKA S, HJORT J. Spatio-temporal aspects of the
environmental factors affecting water quality in boreal rivers[J].
参考文献 Environmental Earth Sciences,2016,76(1):1-13.
[ 1 ] 韩文辉, 党晋华, 赵颖, 等.流域水质目标管理技术研究概 [14] ZHANG H X, HUO S L, YEAGER K M, et al. Phytoplankton
述[J]. 环境与可持续发展,2020,45(5):133-137. response to climate changes and anthropogenic activities
HAN W H, DANG J H, ZHAO Y, et al. Research summary on recorded by sedimentary pigments in a shallow eutrophied
the basin water quality target management technique[J]. lake[J]. Science of the Total Environment,2019,647:1398-1409.
Environment and Sustainable Development,2020,45(5):133- [15] ECCLES R, ZHANG H, HAMILTON D, et al. Trends in water

