Page 81 - 《环境工程技术学报》2023年第1期
P. 81

第 1 期                       张剑等:中国能源消      费  CO 排放的影响因素及情景分析                               · 77 ·
                                                           2
            [  7  ]   SUN  Y,  LI  M  X,  ZHANG  M  J,  et  al.  A  study  on  China's  [19]   LIU L C, FAN Y, WU G, et al. Using LMDI method to analyze
                  economic  growth,  green  energy  technology,  and  carbon  the  change  of  China's  industrial  CO   emissions  from  final  fuel
                                                                                           2
                  emissions based on the Kuznets curve (EKC)[J]. Environmental  use: an empirical analysis[J]. Energy Policy,2007,35(11):5892-
                  Science and Pollution Research International,2021,28(6):7200-  5900.
                  7211.                                       [20]   YIN L B, LIU G C, ZHOU J L, et al. A calculation method for
            [  8  ]   宋晓晖, 张裕芬, 汪艺梅, 等.基于IPAT扩展模型分析人口因素             CO  emission in utility boilers based on BP neural network and
                                                                      2
                  对碳排放的影响[J]. 环境科学研究,2012,25(1):109-115.            carbon balance[J]. Energy Procedia,2017,105:3173-3178.
                  SONG  X  H,  ZHANG  Y  F,  WANG  Y  M,  et  al.  Analysis  of  [21]   WEN L, LIU Y J. A research about Beijing's carbon emissions
                  impacts of demographic factors on carbon emissions based on the  based  on  the  IPSO-BP  model[J].  Environmental  Progress  &
                  IPAT  model[J].  Research  of  Environmental  Sciences,2012,  Sustainable Energy,2017,36(2):428-434.
                  25(1):109-115.                              [22]   DAI  S  Y,  NIU  D  X,  HAN  Y  R.  Forecasting  of  energy-related
            [  9  ]   WANG  C  J,  WANG  F,  ZHANG  X  L,  et  al.  Examining  the  CO   emissions  in  China  based  on  GM(1,  1)  and  least  squares
                                                                      2
                  driving  factors  of  energy  related  carbon  emissions  using  the  support  vector  machine  optimized  by  modified  shuffled  frog
                  extended STIRPAT model based on IPAT identity in Xinjiang[J].  leaping  algorithm  for  sustainability[J]. Sustainability ,2018,
                  Renewable and Sustainable Energy Reviews,2017,67:51-61.  10(4):958.
            [10]   SHAN  X,  SHAO  H  W.  The  scenario  analysis  of  carbon  [23]   HUANG  D,  HAN  M,  JIANG  Y  T.  Research  on  freight
                 emissions based on improved IPAT model in China[J]. Advanced  transportation  carbon  emission  reduction  based  on  system
                 Materials Research,2012,616/617/618:1484-1489.     dynamics[J]. Applied Sciences,2021,11(5):2041.
            [11]   黄蕊, 王铮, 丁冠群, 等.基于STIRPAT模型的江苏省能源消费         [24]   LIU  D  N,  XIAO  B  W.  Can  China  achieve  its  carbon  emission
                 碳排放影响因素分析及趋势预测[J]. 地理研究,2016,35(4):                peaking:  a  scenario  analysis  based  on  STIRPAT  and  system
                 781-789.                                           dynamics model[J]. Ecological Indicators,2018,93:647-657.
                 HUANG R, WANG Z, DING G Q, et al. Trend prediction and  [25]   孔佑花, 王丽, 郭志玲, 等.基于系统动力学的甘肃省碳排放峰
                 analysis of influencing factors of carbon emissions from energy  值预测[J]. 环境工程技术学报,2018,8(3):309-318.
                 consumption  in  Jiangsu Province based on  STIRPAT model[J].  KONG Y H, WANG L, GUO Z L, et al. Carbon emissions peak
                 Geographical Research,2016,35(4):781-789.          prediction  in  Gansu  Province  based  on  system  dynamics[J].
            [12]   NOSHEEN  M,  ABBASI  M  A,  IQBAL  J.  Analyzing  extended  Journal of Environmental Engineering Technology,2018,8(3):
                 STIRPAT  model  of  urbanization  and  CO   emissions  in  Asian  309-318.
                                             2
                 countries[J].  Environmental  Science  and  Pollution  Research  [26]   DUAN H Y, ZHANG S P, DUAN S Y, et al. Carbon emissions
                 International,2020,27(36):45911-45924.             peak  prediction  and  the  reduction  pathway  in  buildings  during
            [13]   XIONG  C  H,  CHEN  S,  XU  L  T.  Driving  factors  analysis  of  operation  in  Jilin  Province  based  on  LEAP[J].  Sustainability,
                 agricultural  carbon  emissions  based  on  extended  STIRPAT  2019,11(17):4540.
                 model of Jiangsu Province, China[J]. Growth and Change,2020,  [27]   MA Z, WANG Y X, DUAN H Y, et al. Study on the passenger
                 51(3):1401-1416.                                   transportation  energy  demand  and  carbon  emission  of  Jilin
            [14]   ZHANG Y L, ZHANG Q Y, PAN B B. Impact of affluence and  Province  based  on  LEAP  model[J].  Advanced  Materials
                 fossil  energy  on  China  carbon  emissions  using  STIRPAT  Research, 2012, 518/519/520/521/522/523: 2243-2246.
                 model[J]. Environmental Science and Pollution Research,2019,  [28]   王永刚, 王旭, 孙长虹, 等.IPAT及其扩展模型的应用研究进
                 26(18):18814-18824.                                展[J]. 应用生态学报,2015,26(3):949-957.
            [15]   LIU  S  X,  PENG  B,  LIU  Q,  et  al.  Economic-related  CO 2  WANG Y G, WANG X, SUN C H, et al. Research progress on
                 emissions analysis of Ordos Basin based on a refined STIRPAT  the  application  of  IPAT  model  and  its  variants[J].  Chinese
                 model[J].  Greenhouse  Gases:  Science  and  Technology,2019,  Journal of Applied Ecology,2015,26(3):949-957.
                 9(5):1064-1080.                              [29]   中国可持续发展能源暨碳排放情景分析[R]. 北京: 国家发展和
            [16]   ZHANG S C, ZHAO T. Identifying major influencing factors of  改革委员会能源研究所, 2003.
                 CO   emissions  in  China:  regional  disparities  analysis  based  on  [30]   张型芳, 罗宏, 吕连宏.碳排放与经济增长的协调性分析[J]. 环
                    2
                 STIRPAT  model  from  1996  to  2015[J].  Atmospheric  境工程技术学报,2017,7(4):517-524.
                 Environment,2019,207:136-147.                      ZHANG X F, LUO H, LÜ L H. Coordination analysis on carbon
            [17]   YANG P G, LIANG X A, DROHAN P J. Using Kaya and LMDI  emission  and  economic  growth[J].  Journal  of  Environmental
                 models to analyze carbon emissions from the energy consumption  Engineering Technology,2017,7(4):517-524.
                 in  China[J].  Environmental  Science  and  Pollution  Research  [31]   TAPIO P. Towards a theory of decoupling: degrees of decoupling
                 International,2020,27(21):26495-26501.             in the EU and the case of road traffic in Finland between 1970
            [18]   WANG W W, ZHANG M, ZHOU M. Using LMDI method to  and 2001[J]. Transport Policy,2005,12(2):137-151.
                 analyze  transport  sector  CO   emissions  in  China[J].  Energy,  [32]   EHRLICH P R, HOLDREN J P. Impact of population growth[J].
                                    2
                 2011,36(10):5909-5915.                             Science,1971,171:1212-1217.
   76   77   78   79   80   81   82   83   84   85   86