Page 329 - 《环境工程技术学报》2023年第1期
P. 329

Vol.13,No.1                        环 境 工 程 技 术 学 报                                  第 13 卷,第 1 期
            Jan.,2023                      Journal of Environmental Engineering Technology         2023 年 1 月

                                  E
            能昌信,张弦,刘景财,等.    受  HDP 膜影响下的垃圾填埋场渗滤液水位探测方法研          究  [J].环境工程技术学报,2023,13(1):325-331.
            NAI  C  X,ZHANG  X,LIU  J  C,et  al.Study  on  detection  method  of  landfill  le  achate  level  affected  by  HDPE  membrane[J].Journal  of  Environmental
            Engineering Technology,2023,13(1):325-331.

                      受    HDP 膜影响下的垃圾填埋场渗滤液水位
                                   E
                                                 探测方法研究



                                                                     2
                                                            1
                                                    1,2
                                             能昌信 ,张弦 ,刘景财 ,徐亚              2
                                               1.山东工商学院信息与电子工程学院
                                        2.中国环境科学研究院固体废物污染控制技术研究所
            摘要 渗滤液水位会影响填埋场堆体稳定并有渗漏污染风险,当渗滤液赋存                         于  HDP 防渗膜上方,堆体和渗滤液堆积电阻率特
                                                                            E
            征的极端分异特性以及边界效应等因素使得最小二乘(LS)等传统物探反演方法无法精确反演实际电阻率分布,从而无法根据
            电阻率差异特征定       位  HDP 膜上方渗滤液水位的高度。为准确刻画堆体内部特别是渗滤液-HDP 膜局部电阻率精细分布,对
                                                                                      E
                                E
            传统高密度电     法  (ERT 装置进行改进,提出了一种川形探测装            置  (C-ERT),并采 用  B 神经网络的电阻率反演模型算法。通过
                                                                             P
                             )
            COMSO 理论模型和江西某生活垃圾填埋场采集的现场数据对该方法进行验证,并                          与  L 法比较。结果表明:基于川形装置的
                   L
                                                                                S
            B 神经网络能有效识别        出  HDP 膜上方的渗滤液区域,识别准确率约           为  83.2%, 而  L 法并不能识别出渗滤液区域。
                                     E
                                                                            S
             P
            关键词 渗滤液水位;高密度电法;HDP 膜;B 神经网络;最小二乘算法;COMSO 模型
                                                                           L
                                          E
                                                P
            中图分类号:705    文章编号:1674-991X(2023)01-0325-07  doi:10.12153/j.issn.1674-991X.20210864
             Study on detection method of landfill le achate level affected by HDPE membrane
                                                 1,2
                                                                1
                                                                            2
                                     NAI Changxin ,  ZHANG Xian ,  LIU Jingcai ,  XU Ya 2
                         1.School of Information and Electronic Engineering, Shandong Technology and Business University
                       2.Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences
            Abstract The water level of leachate will affect the stability of landfill and have the risk of leakage and pollution.
            When the leachate is stored on the HDPE impermeable membrane, the extreme differentiation characteristics of the
            resistivity  characteristics  of  the  two  and  the  boundary  effect  and  other  factors  make  the  least  squares  and  other
            traditional  geophysical  inversion  methods  unable  to  accurately  invert  the  actual  resistivity  distribution,  and  then
            according to the resistivity the difference feature locates the height of the leachate water level above the HDPE
            membrane.  In  order  to  accurately  describe  the  fine  distribution  of  the  local  resistivity  of  the  leachate-HDPE
            membrane inside the garbage dump, The traditional high density electrical method (ERT) device is improved, and a
            detection  device  (C-ERT)  is  proposed,  and  the  resistivity  inversion  model  algorithm  of  BP  neural  network  is
            adopted. The  method is verified by COMSOL  theoretical model and  field data collected  from a domestic waste
            landfill  in  Jiangxi  Province,  and  compared  with  the  least  square  algorithm  (LS).  The  results  show  that  the  BP
            algorithm based on C-ERT can effectively identify the leachate area above HDPE membrane, and the recognition
            accuracy is about 83.2%, while LS inversion algorithm can not identify the leachate area.
            Key words leachate level; electrical resistivity tomography; HDPE membrane; BP neural network; least squares
            algorithm; COMSOL model

                目前我国城市固体废物的处理方式仍以填埋为                           水位过高会对堆体稳定性造成很大影响。我国多数
            主,填埋场的堆体高度随着城市垃圾清运量的增长                             填埋场运行数年后,渗滤液导排系统会出现淤堵失
            而不断增加,堆体稳定性问题也随之暴露。填埋场                             效等问题,在一些南方地区由于天气湿润多雨,加上
            一旦出现失稳破坏,会引起渗滤液外流、废气排放等                            填埋场雨污分流系统不完善,导致这些地区填埋场
            环境污染问题,甚至还会造成人员伤亡                  [1-2] 。渗滤液      渗滤液水位普遍较高,容易发生堆体失稳事故 。而
                                                                                                       [3]


            收稿日期:2021-12-25
            基金项目:国家重点研发计划项       目  (2020YFC1806304,2018YFC1800902);国家自然科学基金项 目  (51708529)
            作者简介:能昌   信  (1965—),男,教授,博士,主要研究方向为环境监测技术,naicx@126.com
   324   325   326   327   328   329   330   331   332   333   334