Page 88 - 《环境工程技术学报》2023年第1期
P. 88

· 84 ·                                  环境工程技术学报                                         第 13 卷

                 CO : research progress of catalyst for hydrogenation of CO  to  [35]   LIU  J  H,  ZHANG  A  F,  LIU  M,  et  al.Fe-MOF-derived  highly
                    2                                   2
                 methanol[J]. Chemical Industry and Engineering Progress,2021,  active  catalysts  for  carbon  dioxide  hydrogenation  to  valuable
                 40(2):565-576.                                     hydrocarbons[J]. Journal of CO  Utilization,2017,21:100-107.
                                                                                       2
            [21]   BAHRUJI  H,  BOWKER  M,  HUTCHINGS  G,  et  al.  Pd/ZnO  [36]   RAMIREZ A, GEVERS L, BAVYKINA A, et al. Metal organic
                 catalysts for direct CO  hydrogenation to methanol[J]. Journal of  framework-derived iron catalysts for the direct hydrogenation of
                                2
                 Catalysis,2016,343:133-146.                        CO  to short chain olefins[J]. ACS Catalysis,2018,8(10):9174-
                                                                      2
            [22]   JIANG F, WANG S S, LIU B, et al. Insights into the influence of  9182.
                 CeO   crystal  facet  on  CO   hydrogenation  to  methanol  over  [37]   CHENG K, GU B, LIU X L, et al. Direct and highly selective
                    2
                                   2
                 Pd/CeO  catalysts[J].   ACS  Catalysis,2020 ,10 (19 ) :11493-  conversion  of  synthesis  gas  into  lower  olefins:  design  of  a
                      2
                 11509.                                             bifunctional  catalyst  combining  methanol  synthesis  and
            [23]   ABDEL-MAGEED  A  M,  KLYUSHIN  A,  REZVANI  A,  et  al.  carboncarbon  coupling[J].  Angewandte  Chemie  International
                 Negative charging of Au nanoparticles during methanol synthesis  Edition,2016,55(15):4725-4728.
                 from CO /H  on a Au/ZnO catalyst: insights from operando IR  [38]   成康, 刘小梁,周铖,等.二氧化碳直接催化转化制低碳烯烃和
                       2
                         2
                 and  near-ambient-pressure  XPS  and  XAS  measurements[J].  芳烃[C]//第一届全国二氧化碳资源化利用学术会议.广州:中
                 Angewandte Chemie International Edition,2019,58(30):10325-  国化学会,2019.
                 10329.                                       [39]   焦佳鹏, 田海锋, 何环环, 等.CO/CO 加氢制芳烃的研究进
            [24]   DOSTAGIR N H M, THOMPSON C, KOBAYASHI H, et al. Rh                        2
                                                                    展[J]. 化工进展,2021,40(1):205-220.
                 promoted In O  as a highly active catalyst for CO  hydrogenation  JIAO J P, TIAN H F, HE H H, et al. Recent advanced of CO/CO
                           3
                         2
                                                2
                 to methanol[J]. Catalysis Science & Technology,2020,10(24):                                2
                                                                    hydrogenation  to  aromatics[J].  Chemical  Industry  and
                 8196-8202.
                                                                    Engineering Progress,2021,40(1):205-220.
            [25]   BAVYKINA A, YARULINA I, AL ABDULGHANI A J, et al.
                                                              [40]   LIU R, TIAN H F, YANG A M, et al. Preparation of HZSM-5
                 Turning  a  methanation  co  catalyst  into  an  in-co  methanol
                                                                    membrane  packed  CuO-ZnO-Al O   nanoparticles  for  catalysing
                 producer[J]. ACS Catalysis,2019,9(8):6910-6918.                        2  3
                                                                    carbon  dioxide  hydrogenation  to  dimethyl  ether[J]. Applied
            [26]   ZHANG  J  Z,  AN  B,  HONG  Y  H,  et  al.  Pyrolysis  of
                                                                    Surface Science,2015,345:1-9.
                 metal –organic  frameworks  to  hierarchical  porous  Cu/Zn-
                                                              [41]   NI Y, CHEN Z, FU Y, et al. Selective conversion of CO  and H
                 nanoparticle@carbon materials for efficient CO  hydrogenation                         2    2
                                               2                    into aromatics[J]. Nature Communications,2018,9:3457.
                 [J]. Materials Chemistry Frontiers,2017,1(11):2405-2409.
                                                              [42]   LI Z L, QU Y Z, WANG J J, et al. Highly selective conversion of
            [27]   ZHENG Z Z, XU H T, XU Z L, et al. A monodispersed spherical
                                                                    carbon  dioxide  to  aromatics  over  tandem  catalysts[J]. Joule,
                 Zr-based metal-organic framework catalyst, Pt/Au@Pd@UIO-66,
                                                                    2019,3(2):570-583.
                 comprising  an  Au@Pd  core-shell  encapsulated  in  a  UIO-66
                                                              [43]   WANG  Y,  TAN  L,  TAN  M  H,  et  al.  Rationally  designing
                 center  and  its  highly  selective  CO   hydrogenation  to  produce
                                        2                           bifunctional  catalysts  as  an  efficient  strategy  to  boost  CO
                 CO[J]. Small,2018,14(5):1702812.                                                           2
                                                                    hydrogenation  producing  value-added  aromatics[J]. ACS
            [28]   LI  Y  H,  CAI  X  H,  CHEN  S  J,  et  al.  Highly  dispersed  metal
                                                                    Catalysis,2019,9(2):895-901.
                 carbide  on  ZIF-derived  pyridinic-N-doped  carbon  for  CO
                                                          2   [44]   梁珑, 张玉冬, 文进军, 等.Pt-Cu/TiO {001}纳米片用于CO 加
                 enrichment  and  selective  hydrogenation[J]. ChemSusChem,                 2              2
                                                                    氢制甲醇反应的研究[J]. 环境科学学报,2020,40(7):2408-
                 2018,11(6):1040-1047.
            [29]   史建公, 刘志坚, 刘春生.二氧化碳催化转化为甲酸的技术进                    2416.
                                                                    LIANG  L,  ZHANG  Y  D,  WEN  J  J,  et  al.  Study  on  Pt-
                 展[J]. 中外能源,2019,24(4):64-82.
            [30]   周程, 南永永, 查飞, 等.金属有机骨架材料在二氧化碳加氢中                  Cu/TiO {001} nanosheets for CO  hydrogenation to methanol[J].
                                                                        2
                                                                                         2
                                                                    Acta Scientiae Circumstantiae,2020,40(7):2408-2416.
                 的应用[J]. 燃料化学学报,2021,49(10):1444-1457.
                                                              [45]   姜华, 李艳萍, 高健, 等.关于统筹建立二氧化碳排放总量控制
                 ZHOU C, NAN Y Y, ZHA F, et al. Application of metal-organic
                                                                    制度的思考[J]. 环境工程技术学报,2022,12(1):1-5.
                 frameworks in CO  hydrogenation[J]. Journal of Fuel Chemistry
                             2
                                                                    JIANG  H,  LI  Y  P,  GAO  J,  et  al.  Thoughts  on  the  overall
                 and Technology,2021,49(10):1444-1457.
            [31]   YE  J  Y,  JOHNSON  J  K.  Design  of  lewis  pair-functionalized  establishment of total carbon dioxide emission control system[J].
                                                                    Journal of Environmental Engineering Technology,2022,12(1):
                 metal  organic  frameworks  for  CO  hydrogenation[J].  ACS
                                          2
                 Catalysis,2015,5(5):2921-2928.                     1-5.
            [32]   WANG S P, HOU S H, WU C, et al. RuCl  anchored onto post-  [46]   YADAV R M, LI Z Y, ZHANG T Y, et al. Amine-functionalized
                                             3
                 synthetic  modification  MIL-101(Cr)-NH   as  heterogeneous  carbon  nanodot  electrocatalysts  converting  carbon  dioxide  to
                                             2
                 catalyst  for  hydrogenation  of  CO   to  formic  acid[J]. Chinese  methane[J]. Advanced Materials,2022,34(2):2105690.
                                        2
                 Chemical Letters,2019,30(2):398-402.         [47]   BANSODE A, URAKAWA A. Towards full one-pass conversion
            [33]   TSHUMA  P,  MAKHUBELA  B  C  E,  ÖHRSTRÖM  L,  et  al.  of carbon dioxide to methanol and methanol-derived products[J].
                 Cyclometalation  of  lanthanum(Ⅲ)  based  MOF  for  catalytic  Journal of Catalysis,2014,309:66-70.
                 hydrogenation  of  carbon  dioxide  to  formate[J].  RSC  Advances,  [48]   LIAO F L, HUANG Y Q, GE J W, et al. Morphology-dependent
                 2020,10(6):3593-3605.                              interactions  of  ZnO  with  Cu  nanoparticles  at  the  materials ’
            [34]   李凝.二氧化碳催化合成低碳烯烃的催化剂研究进展[J]. 化工                   interface  in  selective  hydrogenation  of  CO   to  CH OH[J].
                                                                                                        3
                                                                                                  2
                 技术与开发,2006,35(12):10-12.                           Angewandte Chemie,2011,123(9):2210-2213.
                 LI  N.  Research  development  of  catalyst  for  hydrogenation  [49]   STUDT F, SHARAFUTDINOV I, ABILD-PEDERSEN F, et al.
                 synthesis of light olefins with carbon dioxide[J]. Technology &  Discovery  of  a  Ni-Ga  catalyst  for  carbon  dioxide  reduction  to
                 Development of Chemical Industry,2006,35(12):10-12.  methanol[J]. Nature Chemistry,2014,6(4):320-324. ⊕
   83   84   85   86   87   88   89   90   91   92   93