Page 216 - 《环境工程技术学报》2023年第1期
P. 216

· 212 ·                                 环境工程技术学报                                         第 13 卷

            较为显著(P <0.05);随着试验时间的延长(30 ~105                         Characterization  of  the  internal  resistance  of  a  plant  microbial
            d),阳极未加入颗粒活性炭           的  CW-MF 耦合系统的                  fuel cell[J]. Electrochimica Acta,2012,72:165-171.
                                              C
                                                              [11]   王海燕, 赵远哲, 王文富, 等.人工湿地脱氮影响因素及强化措
            氨氮和总氮去除效果优于阳极加入颗粒活性炭的
                                                                    施研究进展[J]. 环境工程技术学报,2020,10(4):585-597.
            CW-MF 耦合系统。
                   C
                                                                    WANG  H  Y,  ZHAO  Y  Z,  WANG  W  F,  et  al.  A  review  of
                (3) 阳极颗粒活性炭的加入           对  CW-MF 耦合系               influencing factors and enhanced measures for nitrogen removal
                                                  C
            统阳极的微生物群落组成影响较小,但却造成阴极                                  of constructed wetlands[J]. Journal of Environmental Engineering
            微生物群落产生较大差异。未加入颗粒活性炭的                                   Technology,2020,10(4):585-597.
            CW-MF 耦合系统阴极的主要脱氮功能菌群为巨大                          [12]   LI H F, LIU F, LUO P, et al. Stimulation of optimized influent C: N
                   C
            芽殖杆菌属、地杆菌属、黄杆菌属、不动杆菌属和脱                                 ratios on nitrogen removal in surface flow constructed wetlands:
                                                                    performance and microbial mechanisms[J]. Science of the Total
            氯单胞菌属等,而加入颗粒活性碳                的  CW-MF 耦合
                                                    C
                                                                    Environment,2019,694:133575.
            系统则为未分类蓝细菌、硫杆菌属、假单胞菌属和                            [13]   ODEDISHEMI  AJIBADE  F,  WANG  H  C,  GUADIE  A,  et  al.
            硝化螺菌属。                                                  Total nitrogen removal in biochar amended non-aerated vertical
                                                                    flow constructed wetlands for secondary wastewater effluent with
            参考文献                                                    low  C/N  ratio:  microbial  community  structure  and  dissolved
                                                                    organic  carbon  release  conditions[J].  Bioresource  Technology,
            [  1  ]   LOGAN  B  E,  RABAEY  K.  Conversion  of  wastes  into
                                                                    2021,322:124430.
                  bioelectricity and chemicals by using microbial electrochemical
                                                              [14]   JADHAV G S, GHANGREKAR M M. Performance of microbial
                  technologies[J]. Science,2012,337(6095):686-690.
            [  2  ]   KUMAR G G, SARATHI V G S, NAHM K S. Recent advances  fuel cell subjected to variation in pH, temperature, external load
                                                                    and  substrate  concentration[J].  Bioresource  Technology,2009,
                  and challenges in the anode architecture and their modifications
                                                                    100(2):717-723.
                  for  the  applications  of  microbial  fuel  cells[J].  Biosensors  and
                                                              [15]   XU L, ZHAO Y Q, WANG X D, et al. Applying multiple bio-
                  Bioelectronics,2013,43:461-475.
            [  3  ]   LEOPOLD  HEYDORN  R,  ENGEL  C,  KRULL  R,  et  al.  cathodes in constructed wetland-microbial fuel cell for promoting
                  Strategies  for  the  targeted  improvement  of  anodic  electron  energy  production  and  bioelectrical  derived  nitrification-
                  transfer in microbial fuel cells[J]. ChemBioEng Reviews,2020,  denitrification  process[J].  Chemical  Engineering  Journal,2018,
                  7(1):4-17.                                        344:105-113.
            [  4  ]   XU G H, WANG Y K, SHENG G P, et al. An MFC-based online  [16]   COBAN  O,  KUSCHK  P,  KAPPELMEYER  U,  et  al.  Nitrogen
                  monitoring  and  alert  system  for  activated  sludge  process[J].  transforming  community  in  a  horizontal  subsurface-flow
                  Scientific Reports,2014,4:6779.                   constructed wetland[J]. Water Research,2015,74:203-212.
            [  5  ]   HOU B, LIU X Y, ZHANG R, et al. Investigation and evaluation  [17]   侯俊青, 赵吉, 李佳, 等.自然生境中厌氧氨氧化功能微生物生
                  of  membrane  fouling  in  a  microbial  fuel  cell-membrane  态学研究进展[J]. 环境科学研究,2019,32(12):1984-1992.
                  bioreactor  systems  (MFC-MBR)[J].  Science  of  the  Total  HOU  J  Q,  ZHAO  J,  LI  J,  et  al.  Current  insight  on  microbial
                  Environment,2022,814:152569.                      ecology  of  anaerobic  ammonium  oxidation  in  natural
            [  6  ]   YANG  Y,  ZHAO  Y  Q,  TANG  C,  et  al.  Role  of  macrophyte  environment[J].  Research  of  Environmental  Sciences,2019,
                  species  in  constructed  wetland-microbial  fuel  cell  for  32(12):1984-1992.
                  simultaneous wastewater treatment and bioenergy generation[J].  [18]   INOUE  J  I,  OSHIMA  K,  SUDA  W,  et  al.  Distribution  and
                  Chemical Engineering Journal,2020,392:123708.     evolution  of  nitrogen  fixation  genes  in  the  Phylum
            [  7  ]   WU D, YANG L Y, GAN L, et al. Potential of novel wastewater  Bacteroidetes[J]. Microbes and Environments,2015,30(1):44-
                  treatment  system  featuring  microbial  fuel  cell  to  generate  50.
                  electricity  and  remove  pollutants[J].  Ecological  Engineering,  [19]   CHENG C, SUN T Y, LI H J, et al. New insights in correlating
                  2015,84:624-631.                                  greenhouse  gas  emissions  and  microbial  carbon  and  nitrogen
            [  8  ]   XU  D,  XIAO  E  R,  XU  P,  et  al.  Effects  of  influent  organic  transformations  in  wetland  sediments  based  on  genomic  and
                  loading  rates  and  electrode  locations  on  the  electrogenesis  functional  analysis[J].  Journal  of  Environmental  Management,
                  capacity  of  constructed  wetland-microbial  fuel  cell  systems[J].  2021,297:113280.
                  Environmental  Progress  &  Sustainable  Energy,2017 ,36 (2 ) :  [20]   姚倩, 彭党聪, 赵俏迪, 等.活性污泥中硝化螺菌(Nitrospira)的
                  435-441.                                          富集及其动力学参数[J]. 环境科学,2017,38(12):5201-5207.
            [  9  ]   SRIVASTAVA P, YADAV A K, MISHRA B K. The effects of  YAO Q, PENG D C, ZHAO Q D, et al. Enrichment of Nitrospira
                  microbial  fuel  cell  integration  into  constructed  wetland  on  the  in activated sludge and kinetic characterization[J]. Environmental
                  performance of constructed wetland[J]. Bioresource Technology,  Science,2017,38(12):5201-5207.
                  2015,195:223-230.                           [21]   CAI  W,  LI  Y,  NIU  L  H,  et  al.  New  insights  into  the  spatial
            [10]   TIMMERS R A, STRIK D P B T B, HAMELERS H V M, et al.  variability  of  biofilm  communities  and  potentially  negative
   211   212   213   214   215   216   217   218   219   220   221